
HOList: an Open-Source, AI-Oriented Environment 
for Tactic-Based Theorem Proving 
 
Kshitij Bansal, Christian Szegedy 
 
Given the fundamental nature of mathematics and its foundational aspects for almost all 
scientific disciplines, the capability for high level formal mathematical reasoning is both an 
important practical task as well as one of the most challenging case studies in AI. 
Higher-order logic is a prime contender for (automatic) formalizing of any kind of mathematical 
content. 
 
In this talk, we give the general outline of a new open-source environment named HOList that is 
designed for machine learning and AI researchers to interact with tactic-based higher-order 
proof assistants. The goal of our system is to encapsulate and abstract away the technical 
details of dealing with the communication and proof search within proof assistants that were 
designed for human use. Our philosophy was to create an open-source, easy to install and use, 
modular environment that allows AI agents to interact with such logic proof assistants. The 
simple, stable APIs and the modular nature of HOList allows for researchers to share code at 
various levels of abstraction. Our current implementation can only interface with the HOL Light 
proof assistant, but we rely on a very thin, stateless, language agnostic RPC-based 
ProofAssistantService as a communication medium between the proof-search system and the 
assistant, which could be implemented with low overhead for other proof assistants as well. 
That would allow the rest of HOList to be trained to act as a theorem proving agent for other 
similar proof assistants as well. A more significant effort went into instrumenting HOL Light with 
tactic execution tracing mechanisms allowing for imitation learning in order to bootstrap 
reinforcement learning systems. 
 
Our system comes with a simple theorem prover, named DeepHOL, that utilizes deep neural 
networks for predicting the most efficient tactic invocations. This includes selecting the correct 
tactic parameters from a large corpus of theorem parameters and works as a premise selection 
mechanism. Again, we have a thin API between the proof search graph and the AI model. In 
essence the search graph can act as an environment of AI agents. HOList’s architecture is 
aimed to make it simple to integrate with other machine learning models. 
 
We also publish a large corpus of human proof logs derived from the core and complex libraries 
of HOL Light. Furthermore we transformed this data into TF-Examples which is a file format for 
storing data which can be easily and efficiently read by TensorFlow models. In order to allow for 
transparent benchmarking, this data was split into well defined training, validation, and testing 
sets to evaluate the performance of various machine learning models trained with imitation 



learning. The training splits are done at the proof level, so performance on each set can also be 
evaluated by number theorems proved using the prover with the learned models. We have also 
imported the whole formal proof of the Kepler conjecture for further benchmarking purposes. 
 
We share all the training data and theorem databases which allows for benchmarking various AI 
algorithms in the final theorem proving context. Our goal is to allow AI researchers to focus on 
the machine learning algorithmic aspects of theorem proving without needing to understand the 
technical details of the underlying logic or proof assistant. To further lower the complexity of 
setup, we provide docker images for both the proof assistant and the proof-search part of the 
system that interact with each other via RPC calls. We have also taken performance 
considerations into account by addressing the slow startup time of HOL Light by creating 
mechanisms for “cheating in” theorems and definitions quickly. However, this methodology runs 
into the risk of programming errors leading to inconsistent theories as not all theorem objects 
are fully checked by the trusted kernel. To prevent this, we created proof verifiers that can fully 
check the correctness of proof logs by running through the whole theory together with their new 
proofs through the trusted kernel as a final verification step. 
 
By creating a simple, efficient system for higher order theorem proving, we lower the barriers of 
entry for AI researchers to study this important area of application. In addition, by providing 
stable well defined APIs and benchmarks, we hope to foster collaboration between research 
teams and to allow for more transparent and comparable evaluation of various approaches in 
this domain. 
 


